Glyphosate resistance and biodegradation by Burkholderia cenocepacia CEIB S5-2.
José Antonio Díaz-SotoPatricia Mussali-GalanteMaría Luisa Castrejón-GodínezHugo Albeiro Saldarriaga-NoreñaEfraín Tovar-SánchezAlexis RodríguezPublished in: Environmental science and pollution research international (2024)
Glyphosate is a broad spectrum and non-selective herbicide employed to control different weeds in agricultural and urban zones and to facilitate the harvest of various crops. Currently, glyphosate-based formulations are the most employed herbicides in agriculture worldwide. Extensive use of glyphosate has been related to environmental pollution events and adverse effects on non-target organisms, including humans. Reducing the presence of glyphosate in the environment and its potential adverse effects requires the development of remediation and treatment alternatives. Bioremediation with microorganisms has been proposed as a feasible alternative for treating glyphosate pollution. The present study reports the glyphosate resistance profile and degradation capacity of the bacterial strain Burkholderia cenocepacia CEIB S5-2, isolated from an agricultural field in Morelos-México. According to the agar plates and the liquid media inhibition assays, the bacterial strain can resist glyphosate exposure at high concentrations, 2000 mg·L -1 . In the degradation assays, the bacterial strain was capable of fast degrading glyphosate (50 mg·L -1 ) and the primary degradation metabolite aminomethylphosphonic acid (AMPA) in just eight hours. The analysis of the genomic data of B. cenocepacia CEIB S5-2 revealed the presence of genes that encode enzymes implicated in glyphosate biodegradation through the two metabolic pathways reported, sarcosine and AMPA. This investigation provides novel information about the potential of species of the genus Burkholderia in the degradation of the herbicide glyphosate and its main degradation metabolite (AMPA). Furthermore, the analysis of genomic information allowed us to propose for the first time a metabolic route related to the degradation of glyphosate in this bacterial group. According to the findings of this study, B. cenocepacia CEIB S5-2 displays a great glyphosate biodegradation capability and has the potential to be implemented in glyphosate bioremediation approaches.