Login / Signup

Heteroatom-Doped Molybdenum Disulfide Nanomaterials for Gas Sensors, Alkali Metal-Ion Batteries and Supercapacitors.

Lyubov G BulushevaGalina I SemushkinaAnastasiya D Fedorenko
Published in: Nanomaterials (Basel, Switzerland) (2023)
Molybdenum disulfide (MoS 2 ) is the second two-dimensional material after graphene that received a lot of attention from the research community. Strong S-Mo-S bonds make the sandwich-like layer mechanically and chemically stable, while the abundance of precursors and several developed synthesis methods allow obtaining various MoS 2 architectures, including those in combinations with a carbon component. Doping of MoS 2 with heteroatom substituents can occur by replacing Mo and S with other cations and anions. This creates active sites on the basal plane, which is important for the adsorption of reactive species. Adsorption is a key step in the gas detection and electrochemical energy storage processes discussed in this review. The literature data were analyzed in the light of the influence of a substitutional heteroatom on the interaction of MoS 2 with gas molecules and electrolyte ions. Theory predicts that the binding energy of molecules to a MoS 2 surface increases in the presence of heteroatoms, and experiments showed that such surfaces are more sensitive to certain gases. The best electrochemical performance of MoS 2 -based nanomaterials is usually achieved by including foreign metals. Heteroatoms improve the electrical conductivity of MoS 2 , which is a semiconductor in a thermodynamically stable hexagonal form, increase the distance between layers, and cause lattice deformation and electronic density redistribution. An analysis of literature data showed that co-doping with various elements is most attractive for improving the performance of MoS 2 in sensor and electrochemical applications. This is the first comprehensive review on the influence of foreign elements inserted into MoS 2 lattice on the performance of a nanomaterial in chemiresistive gas sensors, lithium-, sodium-, and potassium-ion batteries, and supercapacitors. The collected data can serve as a guide to determine which elements and combinations of elements can be used to obtain a MoS 2 -based nanomaterial with the properties required for a particular application.
Keyphrases