Login / Signup

Charge injection mediated by inverse micelles in nonpolar solvents: A microscopic model.

Wei LiuMohammad Khorsand AhmadiMax H J DekkersAlex HenzenJaap M J den ToonderDong YuanJan GroenewoldGuofu ZhouHans M Wyss
Published in: Journal of colloid and interface science (2024)
We find that the incorporation of both bulk and electrochemical reaction mechanisms in the model can effectively explain the experimental steady-state currents in a wide range of concentrations, voltages (0.5 V-5 V), and cell thicknesses. These numerical results of currents at longer time scales show a steady-state current only when both bulk and electrochemical reactions are taken into account. Moreover, we have observed in our simulation that at low applied voltages, the electric field in the bulk is fully shielded, and the steady-state current in this low-voltage regime is governed by the charge injection at the electrodes. Conversely, when the voltage is high enough and the electric field remains partially unscreened, the bulk disproportionation mechanism dominates the current generation. This also explains why we observe a non-Ohmic behavior where the steady-state currents at high voltages are independent of applied voltage. Hence, by elucidating the physical processes underlying the experimental observations, our model offers a more profound comprehension of charge transport in these systems, which could facilitate advancements in the design of enhanced E-ink displays and smart windows.
Keyphrases