Login / Signup

A Comparison of Methods to Maintain the Equine Cecal Microbial Environment In Vitro Utilizing Cecal and Fecal Material.

Jennifer L MacNicolSimone RenwickCaroline M GanobisEmma Allen-VercoeJeffery Scott WeeseWendy Pearson
Published in: Animals : an open access journal from MDPI (2022)
The equine gastrointestinal (GI) microbiota is intimately related to the horse. The objective of the current study was to evaluate the microbiome and metabolome of cecal inoculum maintained in an anaerobic chamber or chemostat batch fermenter, as well as the fecal slurry maintained in an anaerobic chamber over 48 h. Cecal and fecal content were collected from healthy adult horses immediately upon death. Cecal fluid was used to inoculate chemostat vessels (chemostat cecal, n = 11) and vessels containing cecal fluid (anaerobic cecal, n = 15) or 5% fecal slurry (anaerobic fecal, n = 6) were maintained in an anaerobic chamber. Sampling for microbiome and metabolome analysis was performed at vessel establishment (0 h), and after 24 h and 48 h of fermentation. Illumina sequencing was performed, and metabolites were identified via nuclear magnetic resonance (NMR). Alpha and beta diversity indices, as well as individual metabolite concentrations and metabolite regression equations, were analyzed and compared between groups and over time. No differences were evident between alpha or beta diversity in cecal fluid maintained in either an anaerobic chamber or chemostat. The microbiome of the fecal inoculum maintained anaerobically shifted over 48 h and was not comparable to that of the cecal inoculum. Metabolite concentrations were consistently highest in chemostat vessels and lowest in anaerobic fecal vessels. Interestingly, the rate of metabolite change in anaerobic cecal and chemostat cecal vessels was comparable. In conclusion, maintaining an equine cecal inoculum in either an anaerobic chamber or chemostat vessel for 48 h is comparable in terms of the microbiome. However, the microbiome and metabolome of fecal material is not comparable with a cecal inoculum. Future research is required to better understand the factors that influence the level of microbial activity in vitro, particularly when microbiome data identify analogous communities.
Keyphrases
  • microbial community
  • wastewater treatment
  • magnetic resonance
  • sewage sludge
  • anaerobic digestion
  • computed tomography
  • ms ms
  • single cell
  • deep learning
  • young adults
  • current status
  • childhood cancer