Top-Down Protein Analysis by Tandem-Trapped Ion Mobility Spectrometry/Mass Spectrometry (Tandem-TIMS/MS) Coupled with Ultraviolet Photodissociation (UVPD) and Parallel Accumulation/Serial Fragmentation (PASEF) MS/MS Analysis.
Fanny C LiuMark E RidgewayChristopher A WoottonAlina TheisenErin M PanczykFlorian MeierMelvin A ParkChristian BleiholderPublished in: Journal of the American Society for Mass Spectrometry (2023)
"Top-down" proteomics analyzes intact proteins and identifies proteoforms by their intact mass as well as the observed fragmentation pattern in tandem mass spectrometry (MS/MS) experiments. Recently, hybrid ion mobility spectrometry-mass spectrometry (IM/MS) methods have gained traction for top-down experiments, either by allowing top-down analysis of individual isomers or alternatively by improving signal/noise and dynamic range for fragment ion assignment. We recently described the construction of a tandem-trapped ion mobility spectrometer/mass spectrometer (tandem-TIMS/MS) coupled with an ultraviolet (UV) laser and demonstrated a proof-of-principle for top-down analysis by UV photodissociation (UVPD) at 2-3 mbar. The present work builds on this with an exploration of a top-down method that couples tandem-TIMS/MS with UVPD and parallel-accumulation serial fragmentation (PASEF) MS/MS analysis. We first survey types and structures of UVPD-specific fragment ions generated in the 2-3 mbar pressure regime of our instrument. Notably, we observe UVPD-induced fragment ions with multiple conformations that differ from those produced in the absence of UV irradiation. Subsequently, we discuss how MS/MS spectra of top-down fragment ions lend themselves ideally for probability-based scoring methods developed in the bottom-up proteomics field and how the ability to record automated PASEF-MS/MS spectra resolves ambiguities in the assignment of top-down fragment ions. Finally, we describe the coupling of tandem-TIMS/MS workflows with UVPD and PASEF-MS/MS analysis for native top-down protein analysis.
Keyphrases
- ms ms
- mass spectrometry
- high resolution
- multiple sclerosis
- liquid chromatography
- high performance liquid chromatography
- gas chromatography
- liquid chromatography tandem mass spectrometry
- gene expression
- oxidative stress
- radiation therapy
- dna methylation
- quantum dots
- solid phase extraction
- amino acid
- high glucose
- diabetic rats
- high density