Login / Signup

Hydraulic-stomatal coordination in tree seedlings: tight correlation across environments and ontogeny in Acer pseudoplatanus.

Barbara BeikircherLawren SackAndrea GanthalerAdriano LossoStefan Mayr
Published in: The New phytologist (2021)
Hydraulic conductance is recognized as a major determinant of gas exchange and productivity. However, whether this also applies to seedlings, a critically important stage for vegetation regeneration, has been largely unknown. We analyzed the hydraulic and stomatal conductance of leaves and shoots for 6-wk-old Acer pseudoplatanus seedlings emerging in different lowland and treeline habitats and under glasshouse conditions, respectively, as well as on 9-, 15- and 18-wk-old plants, and related findings to leaf and xylem anatomical traits. Treeline seedlings had higher leaf area-specific shoot hydraulic conductance (Kshoot-L ), and stomatal conductance (gs ), associated with wider xylem conduits, lower leaf area and higher stomatal density than lowland and glasshouse-grown plants. Across the first 18 wk of development, seedlings increased four-fold in absolute shoot hydraulic conductance (Kshoot ) and declined by half in Kshoot-L , with correlated shifts in xylem and leaf anatomy. Distal leaves had higher leaf hydraulic conductance (Kleaf ) and gs compared to basal leaves. Seedlings show strong variation across growth environments and ontogenetic shifts in hydraulic and anatomical parameters. Across growth sites, ontogenetic stages and leaf orders, gs was tightly correlated with Kshoot-L and Kleaf , balancing hydraulic supply with demand for the earliest stages of seedling establishment.
Keyphrases
  • arabidopsis thaliana
  • stem cells
  • climate change
  • minimally invasive
  • dna methylation
  • room temperature
  • essential oil
  • wound healing