Login / Signup

Andean surface uplift constrained by radiogenic isotopes of arc lavas.

Erin M ScottMark B AllenColin G MacphersonKenneth J W McCaffreyJon P DavidsonChristopher SavilleMihai N Ducea
Published in: Nature communications (2018)
Climate and tectonics have complex feedback systems which are difficult to resolve and remain controversial. Here we propose a new climate-independent approach to constrain regional Andean surface uplift. 87Sr/86Sr and 143Nd/144Nd ratios of Quaternary frontal-arc lavas from the Andean Plateau are distinctly crustal (>0.705 and <0.5125, respectively) compared to non-plateau arc lavas, which we identify as a plateau discriminant. Strong linear correlations exist between smoothed elevation and 87Sr/86Sr (R2 = 0.858, n = 17) and 143Nd/144Nd (R2 = 0.919, n = 16) ratios of non-plateau arc lavas. These relationships are used to constrain 200 Myr of surface uplift history for the Western Cordillera (present elevation 4200 ± 516 m). Between 16 and 26°S, Miocene to recent arc lavas have comparable isotopic signatures, which we infer indicates that current elevations were attained in the Western Cordillera from 23 Ma. From 23-10 Ma, surface uplift gradually propagated southwards by ~400 km.
Keyphrases
  • climate change
  • neural network