Simple Method for On-Demand Droplet Trapping in a Microfluidic Device Based on the Concept of Hydrodynamic Resistance.
Mohsen BesanjidehMasoud RezaeianAmir ShamlooSiamak Kazemzadeh HannaniPublished in: Langmuir : the ACS journal of surfaces and colloids (2024)
We demonstrate an innovative method to catch the desired droplets from a train of droplets and immobilize them in traps located in an integrated microfluidic device. To this end, water-in-oil droplets are generated in a flow-focusing junction and then guided to a channel connected to chambers designated for on-demand droplet trapping. Each chamber is connected to a side channel through a batch of microposts. The side channels are also connected to the flexible poly(vinyl chloride) tubes, which can be closed by attaching binder clips. The hydrodynamic resistance of the routes in the device can be changed by opening and closing the binder clips. In this way, droplets are easily guided into individual traps based on the user's demand. A set of numerical simulations was also conducted to investigate the authenticity of the employed idea and to find the optimal geometry for implementing our strategy. This simple method can be easily employed for on-demand droplet trapping without using on-chip valves or complex off-chip actuators proposed in previous studies.