Toward the Development of Simplified Lateral Flow Assays Using Hydrogels as the Universal Control Line.
Tao MaLinlin PengQinying RanYan ZengFeng LiangPublished in: ACS applied bio materials (2023)
Lateral flow assays (LFA) have been widely utilized as point-of-care testing devices in diverse fields. However, it is imperative to preprint costly bioreceptors onto the lateral flow nitrocellulose membrane at the control line. The complex manufacturing process and relatively limited detection capabilities of LFA have impeded their utilization in more challenging fields. Here, we propose a novel and simple strategy to simplify the manufacture of LFA while simultaneously improving the sensitivity by modifying the hydrogel line (HL). In our study, it was observed that the sensitivity of commercial LFA strips could be enhanced by 2-5-fold by incorporating an extra HL. Particularly, a universal control line was developed to accommodate multiple LFA detection modes by substituting the conventional antibody control line with a hydrogel control line (HCL). As a proof of concept, the HCL performance could be associated with the slowdown and interception effect toward fluid, which are dependent on the permeation and hydrophilicity of the hydrogel with varying concentrations in the nitrocellulose membrane. This new design builds the foundation to enhance the sensitivity and develop the simplified LFA sensing platform without additional complicated processes.