Post-synthetic modification-driven ZIF reconstruction and functionalization for efficient SARS-CoV-2 ECL detection.
Ju-Zheng WangYi-Xuan LiQiaoting YangJunji LiJérôme ChauvinXue-Ji ZhangSerge CosnierRobert S MarksDan ShanPublished in: The Analyst (2023)
The emergence of novel pathogens, as well as their frequent variants, raises the significance of developing superior and versatile sensing materials and techniques. Herein, a post-modified zeolitic imidazolate framework (pm-ZIF) was synthesized by using ZIF-67 as a parent MOF, and zinc(II) meso-tetra (4-carboxyphenyl) porphine (ZnTCPP) as a successive exchange ligand. Due to the preservation of the tetrahedral Co-N 4 units from the ZIF precursor and the introduced porphyrin luminophores, this hybrid material pm-ZIF/P(Zn) enables the linear electrochemiluminescence (ECL) signal conversion of the target DNA concentration. An efficient biosensor that can be used to quantitatively detect SARS-CoV-2 was therefore constructed. The linear range of the sensor was 10 -12 -10 -8 M, with a limit of detection (LOD) reaching 158 pM. Compared with the traditional amplification-based methods, the duration time of our method is significantly shortened and the quantitation of the SARS-Cov-2 RdRp gene can be completed within twenty minutes at room temperature.
Keyphrases
- sars cov
- room temperature
- particulate matter
- label free
- air pollution
- heavy metals
- respiratory syndrome coronavirus
- polycyclic aromatic hydrocarbons
- copy number
- sensitive detection
- loop mediated isothermal amplification
- water soluble
- genome wide
- single molecule
- gold nanoparticles
- real time pcr
- nucleic acid
- wastewater treatment
- circulating tumor
- risk assessment
- liquid chromatography tandem mass spectrometry
- gram negative
- high resolution
- cell free
- transcription factor
- genome wide identification
- tandem mass spectrometry