Application of the Born Model to Describe Salt Partitioning in Hydrated Polymers.
Sean M BannonGeoffrey M GeisePublished in: ACS macro letters (2024)
The classic Born model can be used to predict salt partitioning properties observed in hydrated polymers, but there are often significant quantitative discrepancies between these predictions and the experimental data. Here, we use an updated version of the Born model, reformulated to account for the local environment and mesh size of a hydrated polymer, to describe previously published NaCl, KCl, and LiCl partitioning properties of model cross-linked poly(ethylene glycol) diacrylate polymers. This reformulated Born model describes the influence of polymer structure (i.e., network mesh size and its relationship with water content) and external salt concentration on salt partitioning in the polymers with a significant improvement relative to the classic Born model. The updated model most effectively describes NaCl partitioning properties and provides an additional fundamental understanding of salt partitioning processes, for NaCl, KCl, and LiCl, in hydrated polymers that are of interest for a variety of environmental and biological applications.