l-Theanine Goes Greener: A Highly Efficient Bioprocess Catalyzed by the Immobilized γ-Glutamyl Transferase from Bacillus subtilis.
Marina Simona RobescuAndrés R AlcántaraCinzia CalvioCarlo Francesco MorelliGiovanna SperanzaDaniela UbialiTeodora BavaroPublished in: ChemSusChem (2023)
l-Theanine (l-Th) was synthesized by simply mixing the reactants (l-glutamine and ethylamine in water) at 25 °C and Bacillus subtilis γ-glutamyl transferase (BsGGT) covalently immobilized on glyoxyl-agarose according to a methodology previously reported by our research group; neither buffers, nor other additives were needed. Ratio of l-glutamine (donor) to ethylamine (acceptor), pH, enzymatic units (IU), and reaction time were optimized (molar ratio of donor/acceptor=1 : 8, pH 11.6, 1 IU mL -1 , 6 h), furnishing l-Th in 93 % isolated yield (485 mg, 32.3 g L -1 ) and high purity (99 %), after a simple filtration of the immobilized biocatalyst, distillation of the volatiles (unreacted ethylamine) and direct lyophilization. Immobilized BsGGT was re-used (four reaction cycles) with 100 % activity retention. This enzymatic synthesis represents a straightforward, fast, high-yielding, and easily scalable approach to l-Th preparation, besides having a favorable green chemistry metrics.