Highly Active, Long-lived Oxygen Evolution Electrocatalyst Derived from Open-framework Iridates.
Lan YangLei ShiHui ChenXiao LiangBoyuan TianKexin ZhangYongcun ZouXiaoxin ZouPublished in: Advanced materials (Deerfield Beach, Fla.) (2022)
The acidic oxygen evolution reaction underpins several important electrical-to-chemical energy conversions, and this energy-intensive process relies industrially on iridium-based electrocatalysts. Here we present phase-selective synthesis of metastable strontium iridates with open-framework structure and their unexpected transformation into a highly active, ultrastable oxygen evolution nano-electrocatalyst. This transformation involves two major steps: Sr 2+ /H + ion exchange in acid and in situ structural rearrangement under electrocatalysis conditions. Unlike its dense perovskite-structured polymorphs, the open-framework iridates have the ability to undergo rapid proton exchange in acid without framework amorphization. And the resulting protonated iridates further reconstruct into ultrasmall, surface-hydroxylated, (200) crystal plane-oriented rutile nanocatalyst, instead of common amorphous IrO x H y phase, during acidic oxygen evolution. Such microstructural characteristics are found to benefit both the oxidation of hydroxyls and the formation of O-O bonds in electrocatalytic cycle. As a result, the open-framework iridate-derived nanocatalyst gives a comparable catalytic activity to the most active iridium-based oxygen evolution electrocatalysts in acid, and retains its catalytic activity for more than 1,000 hours. This article is protected by copyright. All rights reserved.