Three-Dimensional Printing of Recycled Polypropylene and Activated Carbon Coatings for Harmful Gas Adsorption and Antibacterial Properties.
Jung Bin ParkSeok Hwan AnJae Woong JungJea Uk LeePublished in: Polymers (2023)
In recent years, the utilization of three-dimensional (3D) printing has been expanding due to advances in technology and economic efficiency. One of the 3D printing technologies is fused deposition modeling, which can be used to create different kinds of products or prototypes from various polymer filaments. In this study, the activated carbon (AC) coating was introduced to the 3D outputs printed using recycled polymer materials to impart multi-functions such as adsorption of harmful gas and antimicrobial activities. A filament of uniform diameter (1.75 μm) and a filter template in the form of a 3D fabric shape were prepared through the extrusion and 3D printing processes, respectively, of the recycled polymer. In the next process, the 3D filter was developed by coating the nanoporous AC, produced from the pyrolysis fuel oil and waste PET, on the 3D filter template through direct coating. The 3D filters coated with the nanoporous activated carbon showed the enhanced adsorption capacity of 1038.74 mg of SO 2 gas and the antibacterial properties of 49% removal of E. coli bacteria. As a model system, a functional gas mask that has harmful gas adsorption abilities and antibacterial properties has been produced by a 3D printing process.