Login / Signup

The mechanics and interactions of electrically sensitive mechanoreceptive hair arrays of arthropods.

Ryan A PalmerIsaac V ChenchiahDaniel Robert
Published in: Journal of the Royal Society, Interface (2022)
Recent investigations highlight the possibility of electroreception within arthropods through charged mechanosensory hairs. This discovery raises questions about the influence of electrostatic interaction between hairs and surrounding electrical fields within this sensory modality. Here, we investigate these questions by studying electrostatic coupling in arrays of hairs. We establish the notion of sensitivity contours that indicate regions within which point charges deflect hairs beyond a given threshold. We then examine how the contour's shape and size and the overall hair behaviour change in response to variations in the coupling between hairs. This investigation unveils synergistic behaviours whereby the sensitivity of hairs is enhanced or inhibited by neighbouring hairs. The hair spacing and ratio of a system's electrical parameters to its mechanical parameters influence this behaviour. Our results indicate that electrostatic interaction between hairs leads to emergent sensory properties for biologically relevant parameter values. The analysis raises new questions around the impact of electrostatic interaction on the current understanding of sensory hair processes, such as acoustic sensing, unveiling new sensory capabilities within electroreception such as amplification of hair sensitivity and location detection of charges in the environment.
Keyphrases
  • molecular dynamics simulations
  • small molecule
  • high throughput
  • high density
  • cancer therapy