Non-molecular characterization of pellicle formation by poultry Salmonella Kentucky strains and other poultry-associated Salmonella serovars in Luria Bertani broth.
Zhaohao ShiDana K DittoeSteven C RickePublished in: Journal of environmental science and health. Part. B, Pesticides, food contaminants, and agricultural wastes (2019)
There is limited research concerning the biofilm-forming capabilities of Salmonella Kentucky, a common poultry isolate. The objective was to quantitate pellicle formation of S. Kentucky versus better-characterized Salmonella strains of Enteritidis and Heidelberg. In separate experiments, Salmonella strains and serovars were tested for their biofilm-forming abilities in different Luria-Bertani (LB) broths (1); pellicle formation in different volumes of LB without salt (2); and the potential priming effects on formation after pellicles were transferred three consecutive times (3). Data were analyzed using One-Way ANOVA with means separated using Tukey's HSD (P ≤ 0.05). In the first experiment, there was no significant effect between strain and serovars (P > 0.05), but media type affected pellicle formation significantly with LB Miller and LB minus NaCl plus 2% glucose resulting in no pellicle formation (P < 0.001). When grown in 50 mL, Kentucky 38-0085 produced larger pellicles than Kentucky 38-0055, and Heidelberg strain 38-0127 (P < 0.0001). Serial transfers of pellicles did not significantly affect pellicle formation (P > 0.05); however, Kentucky 38-0084, 38-0085 and 38-0086 produced larger pellicles than Kentucky 38-0055 and 38-0056 and Heidelberg 38-0126, 38-0127 and 38-0152. The current study demonstrates the consistent biofilm forming capabilities of Kentucky and may explain why Kentucky is frequently isolated in poultry processing facilities.