Login / Signup

Static droplet array for the synthesis of nonspherical microparticles.

Hang YangLin JiangKefan GuoNan Xiang
Published in: Electrophoresis (2023)
We reported a manually operated static droplet array (SDA)-based device for the synthesis of nonspherical microparticles with different shapes. The improved SDA structure and reversible bonding between poly(dimethylsiloxane) (PDMS) were used in the device for the large-scale synthesis and rapid extraction of nonspherical microparticles. To understand the device physics, the effects of flow rate, SDA well size, and shape on droplet generation performances were explored. The results indicated that droplet generation in SDA structures was insensitive to the flow rate, and monodisperse droplets were generated by the SDA-based device through manually pushing the syringe. Finally, we integrated four kinds of SDA structures in one device and successfully realized the synthesis and extraction of nonspherical microparticles with different shapes and materials. Our SDA-based device offers numerous advantages, such as simple manual operation, low equipment cost, controllable microparticle shapes and sizes, and large-scale production. Thus, it holds the potential to be used as a flexible tool for the production of nonspherical microparticles.
Keyphrases
  • high throughput
  • single cell
  • high resolution
  • risk assessment
  • mass spectrometry