Miniaturized image classifiers are potential for revolutionizing their applications in optical communication, autonomous vehicles, and healthcare. With subwavelength structure enabled directional diffraction and dispersion engineering, the light propagation through multi-layer metasurfaces achieves wavelength-selective image recognitions on a silicon photonic platform at telecommunication wavelength. The metasystems implement high-throughput vector-by-matrix multiplications, enabled by near 10 3 nanoscale phase shifters as weight elements within 0.135 mm 2 footprints. The diffraction manifested computing capability incorporates the fabrication and measurement related phase fluctuations, and thus the pre-trained metasystem can handle uncertainties in inputs without post-tuning. Here we demonstrate three functional metasystems: a 15-pixel spatial pattern classifier that reaches near 90% accuracy with femtosecond inputs, a multi-channel wavelength demultiplexer, and a hyperspectral image classifier. The diffractive metasystem provides an alternative machine learning architecture for photonic integrated circuits, with densely integrated phase shifters, spatially multiplexed throughput, and data processing capabilities.