Login / Signup

MnS@N,S Co-Doped Carbon Core/Shell Nanocubes: Sulfur-Bridged Bonds Enhanced Na-Storage Properties Revealed by In Situ Raman Spectroscopy and Transmission Electron Microscopy.

Jinliang ZhuPengcheng WeiQingkai ZengGuifang WangKaipeng WuShaojian MaPei Kang ShenXing-Long Wu
Published in: Small (Weinheim an der Bergstrasse, Germany) (2020)
Rational structure and morphology design are of great significance to realize excellent Na storage for advanced electrode materials in sodium-ion batteries (SIBs). Herein, a cube-like core/shell composite of single MnS nanocubes (≈50 nm) encapsulated in N, S co-doped carbon (MnS@NSC) with strong CSMn bond interactions is successfully prepared as outstanding anode material for SIBs. The carbon shell significantly restricts the expansion of the MnS volume in successive sodiation/desodiation processes, as demonstrated by in situ transmission electron microscopy (TEM) of one single MnS@NSC nanocube. Moreover, the in situ generated CSMn bonds between the MnS core and carbon shell play a significant role in improving the Na-storage stability and reversibility of MnS@NSC, as revealed by in situ Raman and TEM. As a result, MnS@NSC exhibits a high reversible specific capacity of 594.2 mAh g-1 at a current density of 100 mA g-1 and an excellent rate performance. It also achieves a remarkable cycling stability of 329.1 mAh g-1 after 3000 charge/discharge cycles at 1 A g-1 corresponding to a low capacity attenuation rate of 0.0068% per cycle, which is superior to that of pristine MnS and most of the reported Mn-based anode materials in SIBs.
Keyphrases
  • electron microscopy
  • ion batteries
  • raman spectroscopy
  • metal organic framework
  • quantum dots
  • room temperature
  • ionic liquid