Designable Nanoadaptor for Enhanced Recognition of Natural Killer Cell to Tumor via Bio-orthogonal Click Reaction.
Xiaohu YangHongchao YangTuanwei LiSisi LingMeng LiYejun ZhangFeng WuShaoqin LiuChunyan LiQiangbin WangPublished in: Nano letters (2024)
Highly efficient recognition of cancer cells by immune cells is important for successful therapeutic-cell-based cancer immunotherapy. Herein, we present a facile NIR-II nanoadaptor [hyaluronic acid (HA)/dibenzocyclooctyne (DBCO)-Au:Ag 2 Te quantum dots (QDs)] for enhancing the tumor recognition and binding ability of natural killer (NK) cells via a bio-orthogonal click reaction in vivo. The Nanoadaptor possesses superior tumor-targeting capacity, facilitating the accumulation of the chemical receptor DBCO at the tumor sites. Subsequently, the enrichment of DBCO on tumor cell surfaces provides multivalent recognition sites for capturing pretreated azide engineered NK92 cells (NK92-N 3 ) through an efficient click reaction, thereby significantly enhancing the therapeutical efficiency. The dynamic process of nanoadaptor-mediated recognition of NK cells to tumor cells could be vividly observed using multiplexed NIR-II fluorescence imaging in a mouse model of lung cancer. Such a nanoadaptor strategy can be extended to other therapeutic cellular systems and holds promise for future clinical applications.