Login / Signup

Arsenic Oxidation by Flavin-Derived Reactive Species under Oxic and Anoxic Conditions: Oxidant Formation and pH Dependence.

Kunfu PiEkaterina MarkelovaPeng ZhangPhilippe Van Cappellen
Published in: Environmental science & technology (2019)
Flavins are ubiquitous redox-active compounds capable of producing reactive oxygen (O2•-, •OH, and H2O2) and flavin radical species in natural environments, yet their roles in the redox transformations of environmental contaminants, such as arsenic (As), remain to be investigated. Here, we show that reduced flavins can be a source of effective oxidants for As(III) under both oxic and anoxic conditions. For instance, in the presence of 15 μM reduced riboflavin (RBFH2), 22% of 30 μM As(III) is oxidized in aerated solution at pH 7.0. The co-oxidation of As(III) with RBFH2 is pH-dependent, with a faster reaction rate under mildly acidic relative to alkaline conditions. Quencher tests with 2-propanol (for •OH) and catalase (for H2O2) indicate that As(III) oxidation under oxic conditions is likely controlled by flavin-derived •OH at pH 5.2 and 7.0, and by H2O2 at pH 9.0. Kinetic modeling further implies that flavin-derived reactive oxygen species are mainly responsible for As(III) oxidation under oxic conditions, whereas oxidation of As(III) under anoxic conditions at pH 9.0 is attributed to riboflavin radicals (RBFH•) generated from co-existing oxidized and reduced riboflavin. The demonstrated ability of flavins to catalyze As(III) oxidation has potential implications for As redox cycling in the environment.
Keyphrases
  • electron transfer
  • hydrogen peroxide
  • reactive oxygen species
  • drinking water
  • heavy metals
  • ionic liquid
  • mass spectrometry
  • climate change
  • anaerobic digestion