Login / Signup

Emission spectral non-Markovianity in qubit-cavity systems in the ultrastrong coupling regime.

Chenyi ZhangMinghong YuYiying YanLipeng ChenZhiguo LüYang Zhao
Published in: The Journal of chemical physics (2022)
We study the emission spectra of the dissipative Rabi and Jaynes-Cummings models in the non-Markovian and ultrastrong coupling regimes. We have derived a polaron-transformed Nakajima-Zwanzig master equation (PTNZE) to calculate the emission spectra, which eliminates the well-known limitations of the Markovian approximation and the standard second-order perturbation. Using the time-dependent variational approach with the multiple Davydov ansatz as a benchmark, the PTNZE is found to yield accurate emission spectra in certain ultrastrong coupling regimes where the standard second-order Nakajima-Zwanzig master equation breaks down. It is shown that the emission spectra of the dissipative Rabi and Jaynes-Cummings models are, in general, asymmetric under various initial conditions. Direct comparisons of spectra for the two models illustrate the essential role of the qubit-cavity counter-rotating term and the spectral features under different qubit-cavity coupling strengths and system initial conditions.
Keyphrases
  • density functional theory
  • room temperature
  • solid state
  • optical coherence tomography
  • computed tomography
  • molecular dynamics