Dual-Mechanism and Multimotion Soft Actuators Based on Commercial Plastic Film.
Linpeng LiJunxing MengChengyi HouQinghong ZhangYaogang LiHao YuHongzhi WangPublished in: ACS applied materials & interfaces (2018)
Soft actuators have attracted a lot of attention owing to their biomimetic performance. However, the development of soft actuators that are easily prepared from readily available raw materials, conveniently utilized, and cost-efficient is still a challenge. Here, we present a simple method to fabricate a polyethylene-based soft actuator. It has controllable anisotropic structure and can realize multiple motions, including bidirectional bending and twisting based on dual mechanisms, which is a rare phenomenon. Especially, the soft actuators can response at a very small temperature difference (Δ T ≥ 2.3 °C); therefore, even skin touch can quickly drive the actuator, which greatly broadens its applications in daily life. The soft actuator could demonstrate a curvature up to 7.8 cm-1 accompanied by powerful actuation. We have shown that it can lift an object 27 times its own weight. We also demonstrate the application of this actuator as intelligent mechanical devices.