Reductive Dehalogenation of Trichloromethane by Two Different Dehalobacter restrictus Strains Reveal Opposing Dual Element Isotope Effects.
Benjamin HeckelElizabeth PhillipsElizabeth A EdwardsBarbara Sherwood LollarMartin ElsnerMichael J ManefieldMatthew LeePublished in: Environmental science & technology (2019)
Trichloromethane (TCM) is a frequently detected and persistent groundwater contaminant. Recent studies have reported that two closely related Dehalobacter strains (UNSWDHB and CF) transform TCM to dichloromethane, with inconsistent carbon isotope effects (ε13CUNSWDHB = -4.3 ± 0.45‰; ε13CCF = -27.5 ± 0.9‰). This study uses dual element compound specific isotope analysis (C; Cl) to explore the underlying differences. TCM transformation experiments using strain CF revealed pronounced normal carbon and chlorine isotope effects (ε13CCF = -27.9 ± 1.7‰; ε37ClCF = -4.2 ± 0.2‰). In contrast, small carbon and unprecedented inverse chlorine isotope effects were observed for strain UNSWDHB (ε13CUNSWDHB = -3.1 ± 0.5‰; ε37ClUNSWDHB = 2.5 ± 0.3‰) leading to opposing dual element isotope slopes (λCF = 6.64 ± 0.14 vs λUNSWDHB = -1.20 ± 0.18). Isotope effects of strain CF were identical to experiments with TCM and Vitamin B12 (ε13CVitamin B12 = -26.0 ± 0.9‰, ε37ClVitamin B12 = -4.0 ± 0.2‰, λVitamin B12 = 6.46 ± 0.20). Comparison to previously reported isotope effects suggests outer-sphere-single-electron transfer or SN2 as possible underlying mechanisms. Cell suspension and cell free extract experiments with strain UNSWDHB were both unable to unmask the intrinsic KIE of the reductive dehalogenase (TmrA) suggesting that enzyme binding and/or mass-transfer into the periplasm were rate-limiting. Nondirected intermolecular interactions of TCM with cellular material were ruled out as reason for the inverse isotope effect by gas/water and gas/hexadecane partitioning experiments indicating specific, yet uncharacterized interactions must be operating prior to catalysis.
Keyphrases
- cystic fibrosis
- gas chromatography
- cell free
- escherichia coli
- drinking water
- stem cells
- single cell
- gene expression
- computed tomography
- high resolution
- heavy metals
- mass spectrometry
- magnetic resonance imaging
- oxidative stress
- room temperature
- transcription factor
- tandem mass spectrometry
- circulating tumor cells
- case control