Blackleg, caused by Leptosphaeria maculans, is a major disease of canola in Canada, Australia, and Europe. For effective deployment of resistant varieties and disease management, it is crucial to understand the population structure of L. maculans. In this study, we analyzed L. maculans isolates from commercial fields in western Canada from 2014 to 2016 for the presence and frequency of avirulence (Avr) genes. A total of 1,584 isolates were examined for the presence of Avr genes AvrLm1, AvrLm2, AvrLm3, AvrLm4, AvrLm6, AvrLm7, AvrLm9, AvrLepR1, AvrLepR2, and AvrLmS via a set of differential host genotypes carrying known resistance genes and a PCR assay. Several Avr genes showed a higher frequency in the pathogen population, such as AvrLm6 and AvrLm7, which were present in >90% of isolates, whereas AvrLm3, AvrLm9, and AvrLepR2 showed frequencies of <10%. A total of 189 races (different combinations of Avr genes) were detected, with Avr-2-4-6-7-S, Avr-1-4-6-7, and Avr-2-4-6-7 as the three predominant races. When the effect of crop rotation was assessed, only a 3-year rotation showed a significantly higher frequency of AvrLm2 relative to shorter rotations. This study provides the information for producers to select effective canola varieties for blackleg management and for breeders to deploy new R genes in disease resistance breeding in western Canada.