Login / Signup

Statistical Analysis of Copper(I) Iodide and Bis(Diphenylphosphino)alkane-Based Complexes and Coordination Polymers.

Léo BoivinAdrien SchlachterDaniel FortinChristophe LescopPierre D Harvey
Published in: Molecules (Basel, Switzerland) (2023)
The prediction of the metal cluster within a coordination polymer or complex, as well as the dimensionality of the resulting polymer or complex (i.e., 0D, 1D, 2D, or 3D), is often challenging. This is the case for Ph 2 P(CH 2 ) m PPh 2 ligands (1 ≤ m ≤ 8) and CuX salts, particularly for X = I. This work endeavors a systematic statistical analysis combining studies in the literature and new data, mapping the nature of the resulting CuI aggregates with eight different diphoshphines in 2:1, 3:2, 1:1, 2:3, and 1:2 CuI:Ph 2 P(CH 2 ) m PPh 2 molar ratios as a function of m, which lead to either pure products or mixtures. Several trends are made relating stoichiometry and chain length to the CuI cluster formed (i.e., globular vs. quasi-planar). Four new X-ray structures were determined: [Cu 3 I 2 ( L1 ) 3 ]I, Cu 3 I 3 ( L2 ) 2 , Cu 2 I 2 ( L6 ) 2 , and Cu 4 I 4 ( L8 ) 2 , where m is, respectively, 1, 2, 6, and 8, in which the Cu x I y central aggregates adopt triangular bipyramid, diamond, rhomboid, and cubane shaped motifs, respectively. Photophysical measurements assisted the establishment of trends considering the paucity of the crystallographic structures. During this study, it was also found that the 0D-complex Cu 2 I 2 (Ph 2 P(CH 2 ) 5 PPh 2 ) 2 exhibits thermally activated delayed fluorescence.
Keyphrases
  • high resolution
  • aqueous solution
  • metal organic framework
  • ionic liquid
  • room temperature
  • magnetic resonance imaging
  • machine learning
  • deep learning
  • artificial intelligence
  • quantum dots