Progress in understanding COVID-19: insights from the omics approach.
Baoxu LinJianhua LiuYong LiuXiaosong QinPublished in: Critical reviews in clinical laboratory sciences (2020)
Sequencing the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome is a crucial task for controlling the ongoing coronavirus disease (COVID-19) pandemic. However, elucidating the pathological mechanisms of SARS-CoV-2 in humans has been challenging. A comprehensive analysis of the molecular characteristics of SARS-CoV-2 and molecular changes in COVID-19 patients may have practical significance in developing assays for the detection of SARS-CoV-2 and formulating clinical treatment strategies against COVID-19. The omics approach for studying biochemical mechanisms can be used to elucidate the molecular characteristics and pathophysiology of SARS-CoV-2. The omics-scale research on COVID-19 has been carried out rapidly, bringing hope for developing a robust diagnostic assay, discovering reliable biomarkers to assess disease progression, and developing therapeutic drugs and vaccines. In this review, we summarize, from an omics perspective, the strategies for the detection of SARS-CoV-2 antigens and antibodies against the virus, the metabolomic and proteomic changes in COVID-19 patients, and the progress of research on anti-SARS-CoV-2 drugs with their potential clinical applications.