Login / Signup

Light-Induced Halide Segregation in 2D and Quasi-2D Mixed-Halide Perovskites.

Kunal DattaAlessandro CaiazzoMichael Allan HopeJunyu LiAditya MishraManuel CordovaZehua ChenLyndon EmsleyMartijn M WienkRené A J Janssen
Published in: ACS energy letters (2023)
Photoinduced halide segregation hinders widespread application of three-dimensional (3D) mixed-halide perovskites. Much less is known about this phenomenon in lower-dimensional systems. Here, we study photoinduced halide segregation in lower-dimensional mixed iodide-bromide perovskites (PEA 2 MA n -1 Pb n (Br x I 1- x ) 3 n +1 , with PEA + : phenethylammonium and MA + : methylammonium) through time-dependent photoluminescence (PL) spectroscopy. We show that layered two-dimensional (2D) structures render additional stability against the demixing of halide phases under illumination. We ascribe this behavior to reduced halide mobility due to the intrinsic heterogeneity of 2D mixed-halide perovskites, which we demonstrate via 207 Pb solid-state NMR. However, the dimensionality of the 2D phase is critical in regulating photostability. By tracking the PL of multidimensional perovskite films under illumination, we find that while halide segregation is largely inhibited in 2D perovskites ( n = 1), it is not suppressed in quasi-2D phases ( n = 2), which display a behavior intermediate between 2D and 3D and a peculiar absence of halide redistribution in the dark that is only induced at higher temperature for the quasi-2D phase.
Keyphrases
  • solar cells
  • solid state
  • perovskite solar cells
  • mass spectrometry
  • quantum dots
  • endothelial cells
  • carbon nanotubes