Isolation and Characterization of Alpha and Nanocrystalline Cellulose from Date Palm (Phoenix dactylifera L.) Trunk Mesh.
Hamid M ShaikhArafat AnisAnesh Manjaly PouloseSaeed M Al-ZahraniNiyaz Ahamad MadharAbdullah AlhamidiMohammad Asif AlamPublished in: Polymers (2021)
Highly pure cellulosic polymers obtained from waste lignocellulose offer great potential for designing novel materials in the concept of biorefinery. In this work, alpha-cellulose and nanocrystalline cellulose were isolated from the date palm trunk mesh (DPTM) through a series of physicochemical treatments. Supercritical carbon dioxide treatment was used to remove soluble extractives, and concentrated alkali pretreatment was used to eliminate the lignin portion selectively to obtain alpha-cellulose in approximately 94% yield. Further treatments of this cellulose yielded nanocrystalline cellulose. The structure-property relationship studies were carried out by characterizing the obtained polymers by various standard methods and analytical techniques such as Fourier transform infrared spectroscopy-attenuated total reflection (FTIR-ATR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), energy dispersive X-ray diffraction (EDX-XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Almost 65% yield of pure cellulose was achieved, out of which 94% is the alpha-cellulose. This cellulose shows good thermal stability and crystallinity. The microscopic analysis of the nanocellulose showed a heterogeneous mix of irregular-shaped particles with a size range of 20-60 nm. The percentage crystallinity of alpha-cellulose and nanocellulose was found to be 68.9 and 71.8, respectively. Thus, this study shows that, this DPTM-based low-cost waste biomass can be a potential source to obtain cellulose and nano-cellulose.