Login / Signup

Perceptual rivalry across animal species.

Olivia CarterBruno van SwinderenDavid A LeopoldShaun P CollinAlexander Maier
Published in: The Journal of comparative neurology (2020)
This review in memoriam of Jack Pettigrew provides an overview of past and current research into the phenomenon of multistable perception across multiple animal species. Multistable perception is characterized by two or more perceptual interpretations spontaneously alternating, or rivaling, when animals are exposed to stimuli with inherent sensory ambiguity. There is a wide array of ambiguous stimuli across sensory modalities, ranging from the configural changes observed in simple line drawings, such as the famous Necker cube, to the alternating perception of entire visual scenes that can be instigated by interocular conflict. The latter phenomenon, called binocular rivalry, in particular caught the attention of the late Jack Pettigrew, who combined his interest in the neuronal basis of perception with a unique comparative biological approach that considered ambiguous sensation as a fundamental problem of sensory systems that has shaped the brain throughout evolution. Here, we examine the research findings on visual perceptual alternation and suppression in a wide variety of species including insects, fish, reptiles, and primates. We highlight several interesting commonalities across species and behavioral indicators of perceptual alternation. In addition, we show how the comparative approach provides new avenues for understanding how the brain suppresses opposing sensory signals and generates alternations in perceptual dominance.
Keyphrases
  • working memory
  • cerebral ischemia
  • genetic diversity
  • signaling pathway
  • resting state
  • high throughput
  • multiple sclerosis
  • mass spectrometry
  • blood brain barrier