Login / Signup

Suppression of the dwarf phenotype of an Arabidopsis mutant defective in thermospermine biosynthesis by a synonymous codon change in the SAC51 uORF.

Yuichi NishiiDaiki KoyamaHiroko FukushimaTakuya Furumoto
Published in: Molecular genetics and genomics : MGG (2023)
Thermospermine plays a critical role in negatively regulating xylem development in angiosperms. A mutant of Arabidopsis thaliana that is defective in thermospermine biosynthesis, acaulis5 (acl5), exhibits a dwarf phenotype with excessive xylem formation. Mechanistically thermospermine acts in attenuating the inhibitory effect of an evolutionarily conserved upstream open reading frame (uORF) on the main ORF of SAC51, which encodes a basic helix-loop-helix protein involved in xylem repression. Here, we revealed that a semidominant suppressor of acl5, sac503, which partially restores the acl5 phenotype, has a point mutation in the conserved uORF of SAC51 with no amino acid substitution in the deduced peptide sequence. In transgenic lines carrying the β-glucuronidase (GUS) reporter gene fused with the SAC51 5' region containing the uORF, the mutant construct was shown to confer higher GUS activity than does the wild-type SAC51 construct. We confirmed that sac503 mRNA was more stable than SAC51 mRNA in acl5. These results suggest that the single-base change in sac503 positively affects the translation of its main ORF instead of thermospermine. We further found that the uORF-GUS fusion protein could be synthesized in planta from the wild-type and sac503 translational fusion constructs.
Keyphrases
  • wild type
  • amino acid
  • cell wall
  • arabidopsis thaliana
  • genome wide
  • dna binding
  • copy number
  • weight gain