Current density analysis of electron transport through molecular wires in open quantum systems.
Daijiro NozakiWolf Gero SchmidtPublished in: Journal of computational chemistry (2017)
The current density in molecular wires connected to contacts is investigated within the nonequilibrium Green's function formalism combined with the Landauer approach. Energy-dependent and total current density through a series of molecular junctions are calculated in real space representation. A rich variety of current patterns including pronounced ring currents ("vortices") are found even in the defect-free minimal building blocks of molecular devices. The influences of contact positions, functional groups as well as atomic defects on the transport properties are examined systematically for prototypical ortho-, meta-, and para-substituted benzenes as well as heteroaromatic systems. It is found that substitutional functional groups mainly shift the molecular levels and retain characteristic transport channels, while a significant change of electronic pathways and conductance is induced by hetero-aromaticity. The current distribution is used to calculate the static magnetic field distribution in the carbon-based conductors. © 2017 Wiley Periodicals, Inc.
Keyphrases