Latitudinal gradient in species diversity provides high niche opportunities for a range-expanding phytophagous insect.
Dylan G JonesJulia KobeltJenna M RossThomas H Q PowellKirsten M PriorPublished in: The Journal of animal ecology (2022)
When species undergo poleward range expansions in response to anthropogenic change, they likely encounter less diverse communities in new locations. If low diversity communities provide weak biotic interactions, such as reduced competition or predation, range-expanding species may experience high niche opportunities. Here, we investigated if oak gall wasp communities follow a latitudinal diversity gradient (LDG) and if lower diversity communities provide weaker interactions at the poles for a range-expanding community member, Neuroterus saltatorius. We performed systematic surveys of gall wasps on a dominant oak, Quercus garryana, throughout most of its range, from northern California to Vancouver Island, British Columbia. On 540 trees at 18 sites, we identified 23 oak gall wasp morphotypes in three guilds (leaf detachable, leaf integral, and stem galls). We performed regressions between oak gall wasp diversity, latitude, and other abiotic (e.g. temperature) and habitat (e.g. oak patch size) factors to reveal if gall wasp communities followed an LDG. To uncover patterns in local interactions, we first performed partial correlations of gall wasp morphotype occurrences on trees within regions). We then performed regressions between abundances of co-occurring gall wasps on trees to reveal if interactions are putatively competitive or antagonistic. Q. garryana-gall wasp communities followed an LDG, with lower diversity at higher latitudes, particularly with a loss of detachable leaf gall morphotypes. Detachable leaf gall wasps, including the range-expanding species, co-occurred most on trees, with weak co-occurrences on trees in the northern expanded region. Abundances of N. saltatorius and detachable and integral leaf galls co-occurring on trees were negatively related, suggesting antagonistic interactions. Overall, we found that LDGs create communities with weaker associations at the poles that might facilitate ecological release in a range-expanding community member. Given the ubiquity of LDGs in nature, poleward range-expanding species are likely moving into low diversity communities. Yet, understanding if latitudinal diversity pattern provides weak biotic interactions for range-expanding species is not well explored. Our large-scale study documenting diversity in a related community of phytophagous insects that co-occur on a host plant reveals that LDGs create high niche opportunities for a range-expanding community member. Biogeographical patterns in diversity and species interactions are likely important mechanisms contributing to altered biotic interactions under range-expansions.