Login / Signup

Subtherapeutic bupropion and hydroxybupropion serum concentrations in a patient with CYP2C19*1/*17 genotype suggesting a rapid metabolizer status.

Arnim Johannes GaeblerKatharina Luise SchneiderJulia Carolin StinglMichael Paulzen
Published in: The pharmacogenomics journal (2020)
Bupropion is hydroxylated to its primary active metabolite hydroxybupropion by cytochrome P450 enzyme CYP2B6. In vitro data suggest the existence of alternative hydroxylation pathways mediated by the highly polymorphic enzyme CYP2C19. However, the impact of its genetic variants on bupropion metabolism in vivo is still under investigation. We report the case of a 28-year-old male Caucasian outpatient suffering from major depressive disorder who did not respond to a treatment with bupropion. Therapeutic drug monitoring revealed very low serum concentrations of both bupropion and hydroxybupropion. Genotyping identified a heterozygous status for the gain-of-function allele with the genotype CYP2C19*1/*17 predicting enhanced enzymatic activity. The present case shows a reduced bupropion efficacy, which may be explained by a reduced active moiety of bupropion and its active metabolite hydroxybupropion, due to alternative hydroxylation pathways mediated by CYP2C19 in an individual with CYP2C19 rapid metabolizer status. The case report thus illustrates the clinical relevance of therapeutic drug monitoring in combination with pharmacogenetics diagnostics for a personalized treatment approach.
Keyphrases