DNAzymes are catalytically active single-stranded DNAs in which DNAzyme 10-23 (Dz 10-23) consists of a catalytic core and a substrate-binding arm that reduces gene expression through sequence-specific mRNA cleavage. However, the in vivo application of Dz 10-23 depends on exogenous delivery, which leads to its inability to be synthesized and stabilized in vivo , thus limiting its application. As a unique reverse transcription system, the bacterial retron system can synthesize single-stranded DNA in vivo using ncRNA msr/msd as a template. The objective of this work is to reduce target gene expression using Dz 10-23 generated in vivo by the retron system. In this regard, we successfully generated Dz 10-23 by cloning the Dz 10-23 coding sequence into the retron msd gene and tested its ability to reduce specific gene expression by examining the mRNA levels of cfp encoding cyan fluorescence protein and other functional genes such as mreB and ftsZ . We found that Dz had different repressive effects when targeting different mRNA regions, and in general, the repressive effect was stronger when targeting downstream of mRNAs. Our results also suggested that the reduction effect was due to cleavage of the substrate mRNA by Dz 10-23 rather than the antisense effect of the substrate-binding arm. Therefore, this study not only provided a retron-based method for the intracellular generation of Dz 10-23 but also demonstrated that Dz 10-23 could reduce gene expression by cleaving target mRNAs in cells. We believe that this new strategy would have great potential in the regulation of gene expression.
Keyphrases
- gene expression
- binding protein
- dna methylation
- induced apoptosis
- amino acid
- dna binding
- cell cycle arrest
- single molecule
- transcription factor
- oxidative stress
- high resolution
- signaling pathway
- nucleic acid
- genome wide identification
- drug delivery
- molecularly imprinted
- genome wide analysis
- crystal structure
- tandem mass spectrometry