N-O Bond Activation by Energy Transfer Photocatalysis.
Da Seul LeeVineet Kumar SoniEun Jin ChoPublished in: Accounts of chemical research (2022)
ConspectusA radical shift toward energy transfer photocatalysis from electron transfer photocatalysis under visible-light photoirradiation is often due to the greener prospects of atom and process economy. Recent advances in energy transfer photocatalysis embrace unique strategies for direct small-molecule activation and sometimes extraordinary chemical bond formation in the absence of additional/sacrificial reagents. Selective energy transfer photocatalysis requires careful selection of substrates and photocatalysts for a perfect match with respect to their triplet energies while having incompatible redox potentials to prevent competitive electron transfer pathways. Substrates containing labile N-O bonds are potential targets for generating reactive key intermediates via photocatalysis to access a variety of functionalized molecules. Typically, the differential electron densities of N and O heteroatoms have been exploited for generation of either N- or O-centered radical intermediates from the functionalized substrates by the electron transfer pathway. However, the latest developments involve direct N-O bond homolysis via energy transfer to generate both N- and O-centered radicals for their subsequent utilization in diverse organic transformations, also in the absence of sacrificial redox reagents. In this Account, we highlight our key contributions in the field of N-O bond activation via energy transfer photocatalysis to generate reactive radical intermediates, with coverage of useful mechanistic insights. More specifically, well-designed N-O bond-containing substrates such as 1,2,4-oxadiazolines, oxime esters, N -indolyl carbonates, and N -enoxybenzotriazoles were successfully utilized in versatile transformations involving selective energy transfer over electron transfer from photocatalysts with high triplet state energy. Direct access to reactive N-, O-, and C-centered (if decarboxylation follows) radical intermediates was achieved for diverse cross-couplings and rearrangement processes. In particular, a variety of open-shell nitrogen reactive intermediates, including N(sp 2 ) and N(sp 3 ) radicals and nitrenes, have been utilized. Notably, diversified transformations of identical substrates have been achieved through careful control of the reaction conditions. 1,2,4-Oxadiazolines were converted into spiro-azolactams through iminyl intermediates in the presence of 1 O 2 , benzimidazoles, or sulfoximines with external sulfoxide reagent through triplet nitrene intermediates under inert conditions. Besides, oxime esters underwent either intramolecular C(sp 3 )-N radical-radical coupling or intermolecular C(sp 3 )-N radical-radical coupling by a combined energy transfer-hydrogen atom transfer strategy. Furthermore, a series of electrochemical and photophysical experiments as well as computational studies were performed to substantiate the proposed selective energy-transfer-driven reaction pathways. We hope that this Account will serve as a guide for the rational design of selective energy transfer processes through the activation of further labile chemical bonds.