Login / Signup

Construction of Hierarchical Hollow Co9 S8 /ZnIn2 S4 Tubular Heterostructures for Highly Efficient Solar Energy Conversion and Environmental Remediation.

Guping ZhangDongyun ChenNajun LiQingfeng XuHua LiJinghui HeJian-Mei Lu
Published in: Angewandte Chemie (International ed. in English) (2020)
Visible-light-responsive hierarchical Co9 S8 /ZnIn2 S4 tubular heterostructures are fabricated by growing 2D ZnIn2 S4 nanosheets on 1D hollow Co9 S8 nanotubes. This design combines two photoresponsive sulfide semiconductors in a stable heterojunction with a hierarchical hollow tubular structure, improving visible-light absorption, yielding a large surface area, exposing sufficient catalytically active sites, and promoting the separation and migration of photogenerated charges. The hierarchical nanotubes exhibit excellent photocatalytic H2 evolution and CrVI reduction efficiency. Under visible-light illumination, the optimized Co9 S8 /ZnIn2 S4 heterostructure provides a remarkable H2 generation rate of 9039 μmol h-1  g-1 without the use of any co-catalysts and CrVI is completely reduced in 45 min. The Co9 S8 /ZnIn2 S4 heterostructure is stable after multiple photocatalytic cycles.
Keyphrases
  • visible light
  • highly efficient
  • metal organic framework
  • high glucose
  • molecularly imprinted
  • room temperature
  • mass spectrometry
  • ionic liquid
  • gold nanoparticles
  • human health
  • climate change
  • reduced graphene oxide