Login / Signup

QM/MM Studies of Dph5 - A Promiscuous Methyltransferase in the Eukaryotic Biosynthetic Pathway of Diphthamide.

Johanna HörbergPatricia Saenz-MéndezLeif A Eriksson
Published in: Journal of chemical information and modeling (2018)
Eukaryotic diphthine synthase, Dph5, is a promiscuous methyltransferase that catalyzes an extraordinary N, O-tetramethylation of 2-(3-carboxy-3-aminopropyl)-l-histidine (ACP) to yield diphthine methyl ester (DTM). These are intermediates in the biosynthesis of the post-translationally modified histidine residue diphthamide (DTA), a unique and essential residue part of the eukaryotic elongation factor 2 (eEF2). Herein, the promiscuity of Saccharomyces cerevisiae Dph5 has been studied with in silico approaches, including homology modeling to provide the structure of Dph5, protein-protein docking and molecular dynamics to construct the Dph5-eEF2 complex, and quantum mechanics/molecular mechanics (QM/MM) calculations to outline a plausible mechanism. The calculations show that the methylation of ACP follows a typical SN2 mechanism, initiating with a complete methylation (trimethylation) at the N-position, followed by the single O-methylation. For each of the three N-methylation reactions, our calculations support a stepwise mechanism, which first involve proton transfer through a bridging water to a conserved aspartate residue D165, followed by a methyl transfer. Once fully methylated, the trimethyl amino group forms a weak electrostatic interaction with D165, which allows the carboxylate group of diphthine to attain the right orientation for the final methylation step to be accomplished.
Keyphrases