Login / Signup

Probing the Mechanism for 2,4'-Dihydroxyacetophenone Dioxygenase Using Biomimetic Iron Complexes.

Atanu BanerjeeJia LiMonika A MolendaAdedamola A OpaladeAmitava AdhikaryWilliam W BrennesselAramice Y S MalkhasianTimothy A JacksonFerman A Chavez
Published in: Inorganic chemistry (2021)
In this study, we report the synthesis and characterization of [Fe(T1Et4iPrIP)(2-OH-AP)(OTf)](OTf) (2), [Fe(T1Et4iPrIP)(2-O-AP)](OTf) (3), and [Fe(T1Et4iPrIP)(DMF)3](OTf)3 (4) (T1Et4iPrIP = tris(1-ethyl-4-isopropyl-imidazolyl)phosphine; 2-OH-AP = 2-hydroxyacetophenone, and 2-O-AP- = monodeprotonated 2-hydroxyacetophenone). Both 2 and 3 serve as model complexes for the enzyme-substrate adduct for the nonheme enzyme 2,4'-dihydroacetophenone (DHAP) dioxygenase or DAD, while 4 serves as a model for the ferric form of DAD. Complexes 2-4 have been characterized by X-ray crystallography which reveals T1Et4iPrIP to bind iron in a tridentate fashion. Complex 2 additionally contains a bidentate 2-OH-AP ligand and a monodentate triflate ligand yielding distorted octahedral geometry, while 3 possesses a bidentate 2-O-AP- ligand and exhibits distorted trigonal bipyramidal geometry (τ = 0.56). Complex 4 displays distorted octahedral geometry with 3 DMF ligands completing the ligand set. The UV-vis spectrum of 2 matches more closely to the DAD-substrate spectrum than 3, and therefore, it is believed that the substrate for DAD is bound in the protonated form. TD-DFT studies indicate that visible absorption bands for 2 and 3 are due to MLCT bands. Complexes 2 and 3 are capable of oxidizing the coordinated substrate mimics in a stoichiometric and catalytic fashion in the presence of O2. Complex 4 does not convert 2-OH-AP to products under the same catalytic conditions; however, it becomes anaerobically reduced in the presence of 2 equiv 2-OH-AP to 2.
Keyphrases
  • transcription factor
  • ms ms
  • simultaneous determination
  • molecular docking
  • magnetic resonance imaging
  • molecular dynamics simulations
  • mass spectrometry
  • crystal structure
  • single molecule
  • aqueous solution
  • dual energy