Chemically Synthetic Membrane Receptors Establish Cells with Artificial Sense-and-Respond Signaling Pathways.
Hui WuLinyan ZhengNeng LingLiyan ZhengYulin DuQiang ZhangYue LiuWeihong TanLiping QiuPublished in: Journal of the American Chemical Society (2023)
Chemically synthetic receptors that establish cells a new sense-and-respond capability to interact with outer worlds are highly desired, but rarely reported. In this work, we develop a membrane-anchored synthetic receptor (Ts-pHLIP-Pr) using DNA and peptide as the building block to equip cells with artificial signaling pathways. Upon sensing external pH stimuli, the Pr module can be translocated across the cell membrane via the conformation switch of pHLIP, enabling membrane-proximal recruitment of specific proteins to trigger downstream signaling cascades. Our experimental results demonstrate the capability of Ts-pHLIP-Pr for regulating PKCε-related signaling events upon responding to external pH reduction. With a modular feature, this receptor can be extended to elicit T cell activation through low-pH environment-induced directional movement of cytoplasmic ZAP70. Our work is expected to offer a new paradigm for intelligent synthetic biology and customized cell engineering.