In-Situ Measurement of Fresh Produce Respiration Using a Modular Sensor-Based System.
Nandita KeshriIngo TruppelWerner B HerppichMartin GeyerCornelia WeltzienPramod V MahajanPublished in: Sensors (Basel, Switzerland) (2020)
In situ, continuous and real-time monitoring of respiration (R) and respiratory quotient (RQ) are crucial for identifying the optimal conditions for the long-term storage of fresh produce. This study reports the application of a gas sensor (RMS88) and a modular respirometer for in situ real-time monitoring of gas concentrations and respiration rates of strawberries during storage in a lab-scale controlled atmosphere chamber (190 L) and of Pinova apples in a commercial storage facility (170 t). The RMS88 consisted of wireless O2 (0% to 25%) and CO2 sensors (0% to 0.5% and 0% to 5%). The modular respirometer (3.3 L for strawberries and 7.4 L for apples) consisted of a leak-proof arrangement with a water-containing base plate and a glass jar on top. Gas concentrations were continuously recorded by the RMS88 at regular intervals of 1 min for strawberries and 5 min for apples and, in real-time, transferred to a terminal program to calculate respiration rates ( R O 2 and R CO 2 ) and RQ. Respiration measurement was done in cycles of flushing and measurement period. A respiration measurement cycle with a measurement period of 2 h up to 3 h was shown to be useful for strawberries under air at 10 °C. The start of anaerobic respiration of strawberries due to low O2 concentration (1%) could be recorded in real-time. R O 2 and R CO 2 of Pinova apples were recorded every 5 min during storage and mean values of 1.6 and 2.7 mL kg-1 h-1, respectively, were obtained when controlled atmosphere (CA) conditions (2% O2, 1.3% CO2 and 2 °C) were established. The modular respirometer was found to be useful for in situ real-time monitoring of respiration rate during storage of fresh produce and offers great potential to be incorporated into RQ-based dynamic CA storage system.