Integrating Mobile and Fixed-Site Black Carbon Measurements to Bridge Spatiotemporal Gaps in Urban Air Quality.
Chirag ManchandaRobert A HarleyJulian D MarshallAlexander J TurnerJoshua Schulz AptePublished in: Environmental science & technology (2024)
Urban air pollution can vary sharply in space and time. However, few monitoring strategies can concurrently resolve spatial and temporal variation at fine scales. Here, we present a new measurement-driven spatiotemporal modeling approach that transcends the individual limitations of two complementary sampling paradigms: mobile monitoring and fixed-site sensor networks. We develop, validate, and apply this model to predict black carbon (BC) using data from an intensive, 100-day field study in West Oakland, CA. Our spatiotemporal model exploits coherent spatial patterns derived from a multipollutant mobile monitoring campaign to fill spatial gaps in time-complete BC data from a low-cost sensor network. Our model performs well in reconstructing patterns at fine spatial and temporal resolution (30 m, 15 min), demonstrating strong out-of-sample correlations for both mobile (Pearson's R ∼ 0.77) and fixed-site measurements ( R ∼ 0.95) while revealing features that are not effectively captured by a single monitoring approach in isolation. The model reveals sharp concentration gradients near major emission sources while capturing their temporal variability, offering valuable insights into pollution sources and dynamics.