Measurement of Switching Performance of Pixelated Silicon Sensor Integrated with Field Effect Transistor.
Hyeyoung LeeJin-A JeonJinyong KimHyunsu LeeMoo Hyun LeeManwoo LeeSeungcheol LeeHwanbae ParkSukjune SongPublished in: Sensors (Basel, Switzerland) (2019)
Silicon shows very high detection efficiency for low-energy photons, and the silicon pixel sensor provides high spatial resolution. Pixelated silicon sensors facilitate the direct detection of low-energy X-ray radiation. In this study, we developed junction field effect transistors (JFETs) that can be integrated into a pixelated silicon sensor to effectively handle many signal readout channels due to the pixelated structure without any change in the sensor resolution; this capability of the integrated system arises from the pixelated structure of the sensor. We focused on optimizing the JFET's switching function, and simulated JFETs with different fabrication parameters. Furthermore, prototype JFET switches were designed and fabricated on the basis of the simulated results. It is important not only to keep the low leakage currents in the JFET but also reduce the current flow as much as possible by providing a high resistance when the JFET switch is off. We determined the optimal fabrication conditions for the effective switching of the JFETs. In this paper, we present the results of the measurement of the switching capability of the fabricated JFETs for various design variables and fabrication conditions.