Fabrication of a β-cyclodextrin-based self-assembly containing a redox-responsive ferrocene.
Bing JiangHuichuang GuoLi ZhaoBaocai XuCe WangChangyao LiuHaiming FanPublished in: Soft matter (2019)
The current research involves fabrication of a redox-responsive self-assembly system based on a ferrocene (Fc)-containing β-cyclodextrin (β-CD) derivative (βCD-EG-Fc). βCD-EG-Fc was synthesized, and its redox-sensitive self-assembly behavior was investigated using various techniques. On the basis of the intermolecular host-guest recognition between the β-CD group and the Fc moiety, βCD-EG-Fc primarily formed network-like structures and then vesicles following aging for a specified time. The formation of these structures was primarily driven by hydrogen bonding. Conversely, the oxidized molecules (βCD-EG-Fc+) self-assembled into cationic vesicles with the absence of host-guest complexation. Upon controlling the oxidation and reduction of Fc/Fc+, reversible aggregate transformation was achieved. The current study resulted in a deeper understanding of β-CD/Fc redox-responsive self-assemblies and contributed to the development of a single-component host-guest inclusion model.