Exploring within-plant hydraulic trait variation: A test of the vulnerability segmentation hypothesis.
Jean V WilkeningRobert Paul SkeltonXue FengTodd E DawsonSally E ThompsonPublished in: Plant, cell & environment (2023)
Observations show vulnerability segmentation between stems and leaves is highly variable within and between environments. While a number of species exhibit conventional vulnerability segmentation (stem P 50 < ${P}_{50}\lt $ leaf P 50 ${P}_{50}$ ), others exhibit no vulnerability segmentation and others reverse vulnerability segmentation (stem P 50 > ${P}_{50}\gt $ leaf P 50 ${P}_{50}$ ). We developed a hydraulic model to test hypotheses about vulnerability segmentation and how it interacts with other traits to impact plant conductance. We do this using a series of experiments across a broad parameter space and with a case study of two species with contrasting vulnerability segmentation patterns: Quercus douglasii and Populus trichocarpa. We found that while conventional vulnerability segmentation helps to preserve conductance in stem tissues, reverse vulnerability segmentation can better maintain conductance across the combined stem-leaf hydraulic pathway, particularly when plants have more vulnerable P 50 ${P}_{50}$ s and have hydraulic segmentation with greater resistance in the leaves. These findings show that the impacts of vulnerability segmentation are dependent upon other plant traits, notably hydraulic segmentation, a finding that could assist in the interpretation of variable observations of vulnerability segmentation. Further study is needed to examine how vulnerability segmentation impacts transpiration rates and recovery from water stress.