Login / Signup

Energy Absorption of 3D Printed ABS and TPU Multimaterial Honeycomb Structures.

Nava Raj KhatriPaul F Egan
Published in: 3D printing and additive manufacturing (2024)
Advances in multimaterial 3D printing are enabling the construction of advantageous engineering structures that benefit from material synergies. Cellular structures, such as honeycombs, provide high-energy absorption to weight ratios that could benefit from multimaterial strategies to improve the safety and performance of engineered systems. In this study, we investigate the energy absorption for honeycombs with square and hexagonal unit cells constructed from acrylonitrile butadiene styrene (ABS) and thermoplastic polyurethane (TPU). Honeycombs were fabricated and tested for out-of-plane and in-plane compression using ABS, TPU, and a combination of ABS with a central TPU band of tunable height. Out-of-plane energy absorption for square honeycombs increased from 2.2 kN·mm for TPU samples to 11.5 kN·mm for ABS samples and energy absorption of hexagonal honeycombs increased from 2.9 to 15.1 kN·mm as proportions of TPU/ABS were altered. In-plane loading demonstrated a sequential collapse of unit cell rows in square honeycombs with energy absorption of 0.1 to 2.6 kN·mm and a gradual failure of hexagonal honeycombs with energy absorption of 0.6 to 2.0 kN·mm. These results demonstrate how multimaterial combinations affect honeycomb compressive response by highlighting their benefits for controlled energy absorption and deformation for tunable performance in diverse engineering applications.
Keyphrases
  • body mass index
  • physical activity
  • induced apoptosis
  • signaling pathway
  • weight loss
  • cell therapy
  • bone marrow
  • cell death
  • cell cycle arrest
  • quantum dots
  • tissue engineering
  • pi k akt
  • energy transfer