Multiparameter Quantification of Liposomal Nanomedicines at the Single-Particle Level by High-Sensitivity Flow Cytometry.
Chaoxiang ChenShaobin ZhuShuo WangWenqiang ZhangYu ChengXiaomei YanPublished in: ACS applied materials & interfaces (2017)
Drug-encapsulated liposomes have been considered the most clinically acceptable drug-delivery systems. However, current methods fall short in the quantitative characterization of individual nanoliposomes because of their small sizes and large heterogeneity. Here, we report a high-throughput method for the absolute quantification of particle size, drug content, fraction of drug encapsulation, and particle concentration of liposomal nanomedicines at the single-particle level. A laboratory-built high-sensitivity flow cytometer was used to simultaneously detect the side-scatter and fluorescence signals generated by individual nanomedicine particles at a speed up to 10 000 nanoparticles/min. To cope with the size dependence of the refractive index of liposomal nanomedicines, different sizes of doxorubicin-loaded liposomes were fabricated and characterized to serve as the calibration standards for the measurement of both particle size and drug content. This method provides a highly practical platform for the characterization of liposomal nanomedicines, and broad applications can be envisioned.