Login / Signup

Experimental and Computational Determination of Optimal Boron Content in Layered Superconductor Sc20C8-xBxC20.

Hiroki NinomiyaTerunari KoshinumaTaichiro NishioHiroshi FujihisaKenji KawashimaIzumi HaseShigeyuki IshidaHiraku OginoAkira IyoYoshiyuki YoshidaYoshito GotohHiroshi Eisaki
Published in: Inorganic chemistry (2020)
It is generally difficult to quantify the amount of light elements in materials because of their low X-ray-scattering power, as this means that they cannot be easily estimated via X-ray analyses. Meanwhile, the recently reported layered superconductor, Sc20C8-xBxC20, requires a small amount of boron, which is a light element, for its structural stability. In this context, here, we quantitatively evaluate the optimal x value using both experimental and computational approaches. Using the high-pressure synthesis approach, which can maintain the starting composition even after sintering, we obtain the Sc20(C,B)8C20 phase by the reaction of the previously reported Sc15C19 and B (Sc15ByC19). Our experiments demonstrate that an increase in y values promotes the phase formation of the Sc20(C,B)8C20 structure; however, there appears to be an upper limit to the nominal y value to form this phase. The maximum critical temperature (Tc = 7.6 K) is found to correspond with the actual x value of x ≈ 5 under the assumption that the sample with the same Tc as the reported value (7.7 K) possesses the optimal x amount. Moreover, we construct the energy convex hull diagram by calculating the formation enthalpy based on first principles. Our computational results indicate that the composition of Sc20C4B4C20 (x = 4) is the most thermodynamically stable, which is reasonably consistent with the experimentally obtained value.
Keyphrases
  • high resolution
  • magnetic resonance
  • computed tomography
  • highly efficient
  • molecularly imprinted
  • electron microscopy