Age-Related Changes in the Clustering of Blood Populations in Cynomolgus Monkeys Depend on Sex and Immune Status.
Dzhina D Karal-OglyAlexander N ShumeevViktoria V KeburiyaMarina V MintelStanislav A RybtsovPublished in: Life (Basel, Switzerland) (2023)
Non-anthropoid primates cynomolgus monkeys ( Macaca fascicularis ), also known as crab-eating macaques, are increasingly used in biomedical and preclinical studies due to their evolutionary proximity to humans, sharing similar diets, infectious and senile diseases. Age-related changes and sexual dimorphism of the immune system of C. monkeys have not been sufficiently characterized in literature, though age and sex differences affect the course of diseases and sensitivity to medications. Aging in C. monkeys is accompanied by an increase in CD3+CD4+CD8+ (DP-T) cells, plasma B-cells, and a decrease in platelets. Erythromyeloid bias has also been noticed in older animals. There was an increase in eosinophils, haematocrit (HCT) and haemoglobin concentration (HGB). Senile decline in the function of the immune system had sex differences. An increase in the number of monocytes, cytotoxic lymphocytes (CTL) and a decrease in the T-helper population were more pronounced in older females. A significant reduction in the number of B-cells and activated T-cells was detected in males only. A moderate correlation with the regression model of aging was established for DP-T, HCT and HGB. The reduction in the B cells count in males and the increase in CTL level in females are moderately correlated with age. Other blood cell populations did not show significant correlations in the regression models due to their high sample variability. The novel cell population CD3-CD20loCD16/CD56+, presumably NK-cells subset, was revealed. This cell population demonstrated an increase trend with age in both sexes. Population-statistical age norms for different sexes for young and very old macaques were established. The blood population clusters associated with sex and immune status in older animals were also identified.