Login / Signup

Ferroelectric columnar assemblies from the bowl-to-bowl inversion of aromatic cores.

Shunsuke FurukawaJianyun WuMasaya KoyamaKeisuke HayashiNorihisa HoshinoTakashi TakedaYasutaka SuzukiJun KawamataMasaichi SaitoTomoyuki Akutagawa
Published in: Nature communications (2021)
Organic ferroelectrics, in which the constituent molecules retain remanent polarization, represent an important topic in condensed-matter science, and their attractive properties, which include lightness, flexibility, and non-toxicity, are of potential use in state-of-the-art ferroelectric devices. However, the mechanisms for the generation of ferroelectricity in such organic compounds remain limited to a few representative concepts, which has hitherto severely hampered progress in this area. Here, we demonstrate that a bowl-to-bowl inversion of a relatively small organic molecule with a bowl-shaped π-aromatic core generates ferroelectric dipole relaxation. The present results thus reveal an unprecedented concept to produce ferroelectricity in small organic molecules, which can be expected to strongly impact materials science.
Keyphrases
  • public health
  • water soluble
  • oxidative stress
  • amino acid
  • contrast enhanced
  • gene expression
  • magnetic resonance
  • dna methylation
  • risk assessment